Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the growing research into Through the Soil wireless power transfer systems, power supply design research is necessary for determining a suitable topology capable of supplying high current density. A modified Marx inverter is chosen to complete this task due to the extremely high voltages produced. The presented analysis shows that TTS system performance metrics greatly improve with increased current density and high operating frequency. Finally, the inverter is used to operate a Through the Soil wireless power transfer system and its performance is assessed.more » « less
-
Kuperman, Alon (Ed.)Increasing the spatial and temporal density of data using networked sensors, known as the Internet of Things (IoT), can lead to enhanced productivity and cost savings in a host of industries. Where applications involve large outdoor expanses, such as farming, oil and gas, or defense, large regions of unelectrified land could yield significant benefits if instrumented with a high density of IoT systems. The major limitation of expanding IoT networks in such applications stems from the challenge of delivering power to each sensing device. Batteries, generators, and renewable sources have predominately been used to address the challenge, but these solutions require constant maintenance or are sensitive to environmental factors. This work presents a novel approach where conduction currents through soil are utilized for the wireless powering of sensor networks, initial investigation is within an 0.8-ha (2-acre) area. The technique is not line-of-sight, powers all devices simultaneously through near-field mechanics, and has the ability to be minimally invasive to the working environment. A theory of operation is presented and the technique is experimentally demonstrated in an agricultural setting. Scaling and transfer parameters are discussed.more » « less
-
Abstract Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid‐electrolyte interphase (SEI) are ideal to enable sodium metal and anode‐free cells. Herein we present advanced characterization of a novel fluorine‐free electrolyte utilizing the [HCB 11 H 11 ] 1− anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm −2 and a high coulombic efficiency of 99.5 % in half‐cell configurations. Surface characterization of electrodes post‐operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine‐free SEI. Furthermore, weak ion‐pairing is identified as key towards the successful development of fluorine‐free sodium electrolytes.more » « less
-
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air.more » « less
An official website of the United States government
